

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2017
Lab 09 – Advanced Debugging

Assignment: Lab 09 – Advanced Debugging
Due Date: During discussion, October 30th through November 2nd
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will give you practice with debugging more complex problems,
such as logic errors, that you may start encountering.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Introduction to Errors

Throughout this semester, we have been working to program a variety of
different small applications and projects to practice using Python. When we
make a mistake in our code, we have attributed it to one of two types of errors.

The first kind, syntax errors, happen when Python can't understand the code
as it is written, due to missing pieces, indentation errors, or typos. The second
kind, logic errors, happen when Python can run the code, but it doesn’t
behave as the programmer (you) expected or wanted it to behave. A third type
of error, one that we haven’t really discussed yet, is called a run-time error.
Run-time errors can be either syntax or logic errors.

With syntax-based run-time errors, they aren’t found until the code has actually
started running. (This is often because the syntax error is contained in code
inside a conditional, or a function that may not always be called.) And with
logic-based run-time errors, they can cause the program to run forever (infinite
loop), incorrectly (conditionals that evaluate to False instead of True), or to exit
unexpectedly due to other issues.

We are going to look at each kind of error and some techniques that we use to
try and debug them.

Error Type Amount of Code
that Runs

What Catches
the Error?

Difficulty to Debug

Syntax Error No code will run Python Interpreter Usually Easy
Logic Error All code will run User Usually Difficult

Run-Time Error Some code will run Python Interpreter
User

Both Easy and
Difficult

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Syntax Errors

Syntax errors are the most common type of error because there are a variety
of small mistakes may cause them. In plain English, we can think of syntax
errors as “sentences” that do not make grammatical sense. They are missing
parts of the sentence, whether that is a noun (i.e., a variable name), a verb
(i.e., a function call), or a punctuation mark (i.e., a quotation mark or
parentheses). They might also have extra pieces that confuse the sentence’s
meaning, or have pieces swapped entirely.

In English, a syntax error might look like this:

Dog cat bear pizza
This sentence doesn’t make any sense – it’s simply a list of nouns with no
verbs or prepositions, and it doesn’t even have a period at the end. Syntax in
programming is similar to grammar in English.

Common syntax errors in Python include:
1. Mismatched parentheses
2. Incorrect capitalization
3. Indentation issues
4. Missing colons
5. Missing or incorrect quotes

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Logic Errors

Logic errors are a type of error where the code will execute but the results of
the code are not what you expected. Python doesn’t “care” about logic errors,
and so the error is only discovered when the programmer examines the output
of the program, and finds it different from what they expected.

A common example of a logic error in programming is when a programmer
uses a “=” instead of a “==”. We know from our practice that “=” is the

assignment operator and sets the value of one variable to the value in the
expression following. We also know that “==” is a comparison operator that

returns either True or False after comparing two expressions or variables.

Python actually will catch this error for you, but this is partly because it is such
a common error, and Python itself has been programmed to look for it. Other
similar errors, such as mixing up “<” and “>” or using “==” instead of “!=” will

not be caught by Python.

In English, we might think of these like this:

Let’s eat grandma!
vs.

Let’s eat, grandma!

Both statements make grammatical sense, but the additional comma changes
the meaning of the statement. Missing the comma in the sentence would be
similar to a logic error in Python.

Common logic errors in Python include:
1. Order of operations (PEMDAS)
2. Reversing comparison operators
3. Using the wrong Boolean operators (and and or)

4. Integer division vs “regular” division
5. Mixing up modulus and integer division
6. Infinite loops

CMSC 201 – Computer Science I for Majors Page 5

Part 1D: Run-time Errors

Run-time errors happen when Python understands what you are saying, but
runs into trouble when following your instructions. Importantly, the code will run
for some amount of time before failing. All run-time errors are caused by either
a syntax error or logic error at their core.

In English, we might think of a run-time error as:

Put the hippo in the fridge.

From a grammatical standpoint, we understand what the sentence is asking us
to do, but when we go to actually do it, we would fail. Similarly, when
programming, Python understands what the code is supposed to do, but is
unable to actually execute what is written when the time comes.

For example, we can imagine a scenario where we write a program to
calculate an average given a list of grades. If the list of grades is empty, and
we try to divide by the length of the list, we are now asking Python to divide by
zero, which isn’t possible. The code runs, but at some point it is asked to do
something that it doesn’t know how to do, and so it fails.

Common run-time errors in Python include:
1. Using an undefined variable or function
2. Dividing by zero
3. Using operators on the wrong datatype (e.g., "4" + "2")

4. Referencing a variable before assignment
5. Trying to combine two variables of incompatible types without conversion

CMSC 201 – Computer Science I for Majors Page 6

Part 1E: Review – Debugging in Python

Being able to discern what type of error you are dealing with will give you an
idea of what you may need to debug the program.

Generally, syntax errors will be caught by the Python interpreter, and the
interpreter will give you some hints on where to look to fix the errors.

Because logic errors are syntactically correct, the Python interpreter does not
actually “see” the error, and won’t give many hints on how to fix it.

Run-time errors are sometimes identified by the Python interpreter. However,
actually fixing the problem is up to you – you’ll need to figure out when and
where the error is occurring in the code, as well as how it should be fixed.

Part 1F: New Material – Debug Statements

A "debug statement" is a print() statement that gives you more information

on what exactly is going on. For example, you might want to see:

What number a while loop is accessing each time it loops over a list:
 print("At index", index, "the number is", nums[index])

The types of two variables that are being compared:
 print("Comparing", type(var1), "to", type(var2))

Whether a conditional is being entered as expected:
 if chosenAction == "dance":

 print("Entered the 'dance' conditional")

If you place a meaningful print() statement inside your code, it can show

you what is going on in the "background" of your program. Each time the code
is run, the information in your debug statement will be printed to the screen,
allowing you to trace what is happening with your program.

Debug statements can be anything that helps you figure out what your program
is actually doing. Just don't forget to remove them when you're done!

CMSC 201 – Computer Science I for Majors Page 7

Part 2: Exercise

In this lab, you’ll be downloading a program that has a large number of errors
that need to be fixed. The original programmer didn’t use incremental
development, and definitely didn’t test as they completed each function or
piece – so it’s up to you now!

Tasks

Starting:
 Copy the broken_lab09.py file from Dr. Gibson’s pub directory

 It should have been renamed to be fixed_lab09.py

Debugging:
 Open the file and examine the functions and main()

 Fix any syntax errors you see
 Fix any logic errors you see
 Run the program

 Read and understand the error message(s)
 Fix the (syntax) error reported by Python or use debug statements

to pinpoint where and why the (logic) error is occurring
General:
 Repeat debugging steps until program runs with no errors
 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 8

Part 3A: Downloading the File

First, create the lab09 folder using the mkdir command – the folder needs

to be inside your Labs folder as well.

Next, copy a file into your lab09 folder using the cp command. (The

command should be all on one line.)

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/broken_lab09.py

fixed_lab09.py

This will copy the file broken_lab09.py from Dr. Gibson’s public folder into

your current folder, and will change the file’s name to fixed_lab09.py

instead.

CMSC 201 – Computer Science I for Majors Page 9

Part 3B: Debugging the Program

The first thing to do when debugging a program (yours or someone else’s) is to
make sure you understand what the programmer intends for the code to do.
Open the file and read the code and the comments.

You will probably spot some syntax errors just by looking at the code – go
ahead and fix any you see. You may also spot some logic errors in the
functions as well, especially with regards to input and output for the different
functions.

Once you’ve fixed all of the errors you can see, go ahead and run the lab.
You’ll probably get something like this:

linux1[5]% scl enable python33 bash

bash-4.1$ python lab09.py

 File "lab09.py", line 50

 def numsEquiv(item1, item2)):

 ^

SyntaxError: invalid syntax

Python is telling us that there is a syntax error on or above line 50.
Specifically, it believes that the error is due to the second parentheses at the
end of the function definition. Fix this error, and then exit and try again to run
the program.

Here are some shortcuts that may make your life a bit easier while debugging.
The first two shortcuts work best after Python 3 has already been enabled, and
prevent you from having to close and re-open the file every time you want to
run the program. (You still need to save before minimizing.)

Command Meaning
CTRL+Z “Minimize” the file you’re working on in emacs
fg From the command line, “maximize” the previously

minimized file
META+G+G+number Go to the line number specified (after hitting enter)

For example, META+G+G+19 moves to line 19

CMSC 201 – Computer Science I for Majors Page 10

After fixing that and a few other errors, you might see a message like this:

bash-4.1$ python lab09.py

Traceback (most recent call last):

 File "lab09.py", line 96, in <module>

 main()

 File "lab09.py", line 77, in main

 num1 = getValidInt()

 File "lab09.py", line 25, in getValidInt

 num = input(int(msg))

ValueError: invalid literal for int() with base

10: 'Enter an integer between 1 and 100

(inclusive): '

This error message looks a lot more complicated than the last one, but it’s
actually not! In an attempt to help, Python is “tracing back” the whole journey
of how it saw the error. If we read from the top, we can see that the following
things happened (in this order):

1. Python called main(), found on line 96

2. From inside main(), Python called getValidInt() on line 77

3. Inside getValidInt(), Python found a value error on line 25

When we look at the message for the value error (a type of run-time error) we
see that the int() function is given an “invalid literal” – specifically, that is

expecting something of “base 10” (a decimal) but is instead receiving the string
“Enter an integer between 1 and 100 (inclusive): ”. Fix this error, and then
exit and try again to run the program.

CMSC 201 – Computer Science I for Majors Page 11

Continue with this cycle until everything works correctly:

1. Try to run the program.
2. Read the error message.

a. Find the problem in your code.
b. Fix the problem.
c. Go back to step 1.

3. If there is no error message, test that the code functions properly.
4. If it doesn’t function properly, go back to the code and examine its

behavior. Debugging/print statements can be helpful.

Once getValidInt() functions correctly, go down to main() and

uncomment the three lines of code after the “# check for

duplicates...” comment. Start the cycle again: run, fix the errors Python

catches, and test to make sure there aren’t any remaining errors.

Once twoInARow() functions correctly, go back down to main() and

uncomment the two lines of code after the “# check to see if...”

comment. Start the cycle again: run, fix the errors Python catches, and test to
make sure there aren’t any remaining errors.

And finally once equiv() functions correctly, uncomment the last two lines in

main(), and test that average() works correctly. Use the same debugging

techniques you used for the earlier parts of the lab.

CMSC 201 – Computer Science I for Majors Page 12

Part 4: Completing Your Lab

To test your program, make sure that you’ve enabled Python 3, then run
lab09.py. Try a few different inputs to see how well your program works.

The two example runs below should test that everything works.

bash-4.1$ python lab09.py

Enter an integer between 1 and 100 (inclusive): 200

Invalid choice!

Enter an integer between 1 and 100 (inclusive): -5

Invalid choice!

Enter an integer between 1 and 100 (inclusive): 1

Thank you for choosing 1

Found dupes of 4 next to each other.

Found dupes of 7 next to each other.

The result of the nearby duplicate test:

There are 2 matches

The result of the equivalence test: No match

The average is 4.090909090909091

bash-4.1$ python fixed_lab09.py

Enter an integer between 1 and 100 (inclusive): 9

Thank you for choosing 9

Found dupes of 4 next to each other.

Found dupes of 7 next to each other.

The result of the nearby duplicate test:

There are 2 matches

The result of the equivalence test: They match!

The average is 4.090909090909091

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

(Tasks list can be found on next page.)

CMSC 201 – Computer Science I for Majors Page 13

Tasks

Starting:
 Copy the broken_lab09.py file from Dr. Gibson’s pub directory

 It should have been renamed to be fixed_lab09.py

 Copy the less_broken.py file from Dr. Gibson’s pub directory,

and savor the function headers, spaces between operators, and useful
variable names and comments used in the program’s code
 It should have been renamed to be lab09.py

Debugging:
 Open the file and examine the functions and main()

 Fix any syntax errors you see
 Fix any logic errors you see
 Run the program

 Read and understand the error message(s)
 Fix the (syntax) error reported by Python or use debug statements

to pinpoint where and why the (logic) error is occurring
General:
 Repeat debugging steps until program runs with no errors
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

